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1. Introduction 
In experimental work it has been observed that cells and clusters of cells, either in vivo or in vitro, can 
move using the process of chemotaxis where they sense the direction in which the concentration of a 
chemical is increasing and move towards the region where the concentration is greatest.  
Aggregation of cells, either singularly or in small clusters, into large clusters has been reported in the 
literature. An example of the formation of clusters of pancreatic cells is shown in the Figures below 
(obtained, with thanks, from The Brighton Centre for Regenerative Medicine, University of Brighton).  
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Here each figure is a frame taken from a time-lapse video of an experiment to observe the formation of 
clusters. The times of the frames are given on a linear scale but are otherwise in arbitrary units. The 
frames from the video show how the cells combine together to form clusters over time. In particular, 
the video shows how a large number of individual cells can combine together to form a large cluster. 
The purpose of the research described here is to use mathematical modelling to develop computer 
simulations of how cells cluster together. 
The aim of this research is to develop a mathematical model for simulating how the cells combine 
together to form clusters, as observed in the above Figure.  
The first model developed here assumes that the cells experience a force which is proportional to the 
gradient of the concentration of a chemical signal in the medium which contains the cells. The standard 
laws of motion are then used to derive a system of differential equations which can be solved to give 
the locations of the cells and clusters at any required time.  
The subsequent models use more sophisticated mathematics to model the motion of the cells, the spread 
of the chemical signal and the surrounding fluid.  
 
2. Simple Model 
Assume that a cell can be represented as a rigid circle, and as the motion is so slow (typically over 
hours) assume that other than providing drag, the motion of the surrounding liquid can be neglected. 
Assume that all cells have the same uniform thickness and density so that their mass is proportional to 
the square of their radii. Hence if 𝐱'(𝑡) denotes the location of the 𝑖th cell or cluster at time 𝑡 then 
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The force 𝐅' is assumed to be proportional to the gradient in the concentration of a chemical that attracts 
the cells. That is, 

𝐅' = 𝑘		∇	𝑐 
 
 
where 𝑐 satisifes 
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If the chemical is being secreted by more than one cell, the total concentration is the sum of the 
contributions from all of the emitting cells 
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The concentration 𝑐<  of the chemical released by the 𝑗th cell at release time 𝑡<  is given by 
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Hence the equation of motion for the 𝑖th cell or cluster is 
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which gives a system of 𝑁 second order differential equations (or 2𝑁 first order differential equations) 
to solve. In the work presented here an adaptive 4th order Runge-Kutta method has been used (see 
Atkinson 1989 for the details of the Runge-Kutta scheme). 
If the cells all have radius 𝑅 then two cells will have collided if 
 

T𝐱' − 𝐱<T ≤ 2𝑅. 
 
 
After two (or more) cells have collided they form a cluster. Assume that the relative positions of cells 
in a cluster are fixed. That is, they move as a single rigid body. The total force acting on a cluster due 
to the chemical signal is simply the sum of the forces acting on each individual cell. When two (or 
more) cells or clusters collide, the velocity of the new larger cluster is given by the conservation of 
momentum.  
The Figure below shows the results of simulation cell clustering over time due to chemotaxis for an 
example with 123 cells in 50 initial small clusters. 
 



 
 
3. Computational Models. 
This section presents the more sophisticated computational models that have been developed for 
simulating cell motion due to chemotaxis. The first subsection presents the fluid flow part which is the 
same for all the models developed here. The later subsections present the different methods for 
modelling the spread of the chemical signal, and the resulting forces acting on the cells. 
3.1 Boundary Element Method For Modelling The Fluid Motion. 
Let ΩV denote the fluid filled region exterior to the cells and let Ω' and Γ' denote the interior and 
boundary of the 𝑖XY cell respectively. As the work presented here is going to use a Stokes flow model 
for the fluid flow, let ΓM denote the outer boundary to the fluid domain that is needed to avoid the 
problems associated with Stokes paradox which states that it is impossible to an non-zero boundary 
condition for a flow in an infinite two-dimensional fluid (see Lighthill 1986 for example). Finally let Γ 
be the union of ΓM and all of the cell boundaries Γ'. 
Let 𝒙', 𝒗' and 𝒂' denote the location, velocity and acceleration of the centre of mass of the 𝑖XY cell, and 
let 𝜃'  and 𝜔' denote the rotation and angular velocity of the 𝑖XY cell about its centre of mass. 
Assume that the Reynolds number of the flow is small enough that at each instant the flow can be 
represented as Stokes flow: 

−∇𝑝 + 𝜇∇-𝒖 = 𝟎 
∇ ⋅ 𝒖 = 0 

 
 
where 𝑝 is the fluid pressure, 𝒖 is the fluid velocity and 𝜇 is the dynamic viscosity. The boundary 
conditions for the flow are 

𝒖(𝒙) = 𝒗' + 𝜔'	𝐽	(𝒙 − 𝒙') 𝒙 ∈ Γ'

𝒖(𝒙) = 𝟎 𝒙 ∈ ΓM
 

Where 
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The flow of the fluid can be formulated as the boundary integral equation (Pozrikidis 1992) 
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𝒓 = 𝒙 − 𝒙M,	 𝑟 = |𝒓|,  𝒏 is the unit normal to Γ and 𝛿'< is the Kronecker delta function. Since the fluid 
velocity 𝒖 is known on the whole of the boundary Γ, this gives a first-kind Fredholm integral equation 
to solve for the hydrodynamic surface forces 𝒇k. These are the hydrodynamic forces which act on the 
surfaces of the cells. The next section will consider the forces due to chemotaxis. 
 
3.2 The Convection-Diffusion Equation For Modelling The Chemical Signal. 
When a moving cell secrets the chemical signal into the (moving) surrounding fluid the 
concentrations 𝑐 can be modelling using 
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where 𝐷 is the diffusion constant and 𝒖 the velocity of the fluid. This is solved on the whole domain Ω 
with 
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Here 𝐹(𝒙, 𝑡) is a source term that can be used to simulate a cell manufacturing the chemical signal. 
Hence if cell 1 is producing the chemical signal at the rate 𝑅 for the first 𝑡? units of time then 

𝐹(𝑥, 𝑡) = �
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Applying the finite element method to solve this equation leads to (see Zienkiewicz and Taylor 1989 
for details of the finite element method) 
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Here 𝒄 denotes the vector of nodal values of the concentration and an overdot denotes differentiation 
with respect to time. The main drawback of this method is that 𝐾(𝑡) will need to be recalculated at 
every time-step which adds considerably to the computational cost of this method. 



3.3 Simplified Model Of The Spread Of The Chemical 
To avoid the computational cost of having to solve the convection-diffusion equation, an alternative 
model is where the spread of the chemical is modelled using the linear diffusion equation  

𝜕𝑐
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and move the solution with the cell that is secreting the chemical. Numerical results show that this is an 
acceptable approximation. 
For a circular cell it is possible to find an exact solution to the diffusion equation for the concentrations. 
If the location of the cell secreting the chemical is (𝑥?(𝑡), 𝑦?(𝑡)) then the concentration of the chemical 
is given by 
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where 𝑐M is a constant that controls the magnitude of the concentrations and 𝑡M is a small parameter to 
avoid computational problems when 𝑡 = 0. However, this method can only be applied when the cell 
secreting the chemical is circular. A method that can be used for cells with other shapes is currently 
under development. 
 
3.4 Time Integration Methods 
Using either of the above methods the chemotaxis force acting on the surface of the cell are given by 

g 𝑘'	𝑐(𝒙, 𝑡)		𝒏		𝑑Γ𝒙
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where 𝒏 is the unit normal vector acting outwards from the cell interior and 𝑘' is a constant that controls 
how strongly the 𝑖th cell reacts to the chemical signal. Hence the total force and torque acting on the cell 
is the sum of the hydrodynamic forces and the chemotaxis forces given by 

𝒇' = g (𝒇k + 𝑘'	𝑐(𝒙, 𝑡)𝒏)	𝑑Γ'
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The equations of motion for the cells are now given by 
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These can be integrated through time using a fourth order Runge-Kutta scheme. 
3.5 Numerical Results. 
The test problem below shows the motion of four cells towards a central cell that is secreting the 
chemical signal. In the diagrams, blue denotes regions where the chemical concentration is low and red 
denotes regions where the concentration is high.  



 
As expected, the four outer cells move symmetrically towards the central cell which is secreting the 
chemical. The Figure below shows the distance that each of the four outer cells move towards the central 
cell. The four curves are superimposed, demonstrating the expected symmetry of the results and that 
the numerical simulation is behaving as expected. 

 
 
4. Conclusions And Future Work 
The simple rigid particle model is very good for seeing how a large number of cells can form clusters 
due to chemotaxis. However, this model has limited scope in terms of the fluid mechanics and 
cell/cluster geometries. The boundary integral method is an effective way of modelling the motion of 
biological cells moving in a viscous fluid and does not have the same geometrical limitations as the 
rigid particle model. The convection-diffusion equation can be used to model the spread of the chemical 
signal through the fluid, but it needs to be solved numerically using the finite element method (or 
similar) which is computationally very expensive. Avoiding the use of the finite element method 



considerably reduces the computational cost, but possibly at the cost of losing some of the information 
about how the chemical signal spreads out. 
A method for modelling how a cell which is not circular manufactures the chemical is currently under 
development, based on an integral representation of the initial chemical concentrations. A model of 
how two cells collide needs to be developed. The early stages of the collision has similarities to the way 
in which two liquid droplets coalesce. However, in the later stages the two cells remain separate and 
the material in their interiors does not combine in the say way that the liquid in two droplets combines. 
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